§ 25.934 probability of this kind of failure is extremely remote. - (3) Each system must have means to prevent the engine from producing more than idle thrust when the reversing system malfunctions, except that it may produce any greater forward thrust that is shown to allow directional control to be maintained, with aerodynamic means alone, under the most critical reversing condition expected in operation. - (b) For propeller reversing systems— - (1) Each system intended for ground operation only must be designed so that no single failure (or reasonably likely combination of failures) or malfunction of the system will result in unwanted reverse thrust under any expected operating condition. Failure of structural elements need not be considered if this kind of failure is extremely remote. - (2) Compliance with this section may be shown by failure analysis or testing, or both, for propeller systems that allow propeller blades to move from the flight low-pitch position to a position that is substantially less than that at the normal flight low-pitch position. The analysis may include or be supported by the analysis made to show compliance with the requirements of §35.21 of this chapter for the propeller and associated installation components. $[Amdt.\ 25\text{--}72,\ 55\ FR\ 29784,\ July\ 20,\ 1990]$ ## § 25.934 Turbojet engine thrust reverser system tests. Thrust reversers installed on turbojet engines must meet the requirements of §33.97 of this chapter. [Amdt. 25-23, 35 FR 5677, Apr. 8, 1970] ## § 25.937 Turbopropeller-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be designed so that no single failure or malfunction of any of the systems during normal or emergency operation results in propeller drag in excess of that for which the airplane was designed under §25.367. Failure of structural elements of the drag limiting systems need not be considered if the prob- ability of this kind of failure is extremely remote. ## § 25.939 Turbine engine operating characteristics. - (a) Turbine engine operating characteristics must be investigated in flight to determine that no adverse characteristics (such as stall, surge, or flameout) are present, to a hazardous degree, during normal and emergency operation within the range of operating limitations of the airplane and of the engine. - (b) [Reserved] - (c) The turbine engine air inlet system may not, as a result of air flow distortion during normal operation, cause vibration harmful to the engine. [Amdt. 25–11, 32 FR 6912, May 5, 1967, as amended by Amdt. 25–40, 42 FR 15043, Mar. 17, 1977] # § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both— - (a) The system comprised of the inlet, engine (including thrust augmentation systems, if incorporated), and exhaust must be shown to function properly under all operating conditions for which approval is sought, including all engine rotating speeds and power settings, and engine inlet and exhaust configurations; - (b) The dynamic effects of the operation of these (including consideration of probable malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would require exceptional skill, alertness, or strength on the part of the pilot to avoid exceeding an operational or structural limitation of the airplane; and - (c) In showing compliance with paragraph (b) of this section, the pilot strength required may not exceed the limits set forth in §25.143(c), subject to the conditions set forth in paragraphs (d) and (e) of §25.143. [Amdt. 25-38, 41 FR 55467, Dec. 20, 1976] ### §25.943 Negative acceleration. No hazardous malfunction of an engine, an auxiliary power unit approved for use in flight, or any component or